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A direct method for the numerical sclution of two- and three-dimen-
sional Poisson equations on non-staggered and non-uniform grids is
presented. The method is an extension of the method of matrix decom-
position proposed by Buzbee et a/. (SIAM J. Numer. Anal. 7 {1970)).
Attention is focussed on the solution of the Poisson equation subject to
Neumann boundary condition and details of the performance of the
algorithm including operation counts are presented.  © 1993 Academic
Press. Inc.

1. INTRODUCTION

The need to solve a Poisson equation for pressure with
Neumann boundary conditions arises among other places
in the numerical solution of the primitive equation form of
the incompressible Navier-Stokes equations [ 1]. Although
the Neumann—Poisson problem for pressure can be avoided
in some formulations (the vorticity—streamfunction form
being usual in two-dimensional studies} it seems that in
three-dimensional flows other formulations are neither as

- simple, nor as direct, as those based on primitive variables.
If one is interested in the unsteady development of the flow,
pressure needs to be determined from a Poisson equation at
each time step and thus it is desirable to do this as efficiently
as possible. This is particularly true today when fast com-
puters have made direct simulations of three-dimensional
oscillatory or chaotic flows feasible and long calculations
are needed in order to obtain statistical information on the
flow.

With these notions in mind, in this paper we discuss how
to extend the direct solution method based on matrix
decomposition that appeared in the work of Buzbee er a,
[2], to the Poisson equation with Neumann boundary con-
ditions. Since accurate resolution often calls for the use of
non-uniform grids, our aim was to formulate the methed on
such a mesh. The method is closely related to separation of
variables and Fourier analysis. The latter, together with
cyclic reduction, has been reviewed by Dorr [3] and
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Swarztrauber [4]. Indeed, the method of matrix decom-
position can be considered to be a natural extension of these
methods when coordinate transformation destroys those
properties of the equations that make Fourier analysis and
cyclic reduction efficient, and our contribution in this note
is to show how to carry out this extension to the solution
of the Neumann—Poisson problem for grids that are non-
uniform m each of the coordinate directions.

1t is sufficient here only to discuss the two-dimensional
problem, for the extension to three dimensions follows
directly from it. We have carried it out and are in the process
of calculating solutions to some problems of three-dimen-
sional time-dependent thermal convection in a cavity by
methods based on further development of the ideas we have
discussed in [ 17 and of those discussed below.

We are interested in solving on a non-staggered,
non-uniform grid the equation

a’p &%p

FEa M)

Cs

subject to given values of the normal derivative, ép/dn on
the boundaries. It is well known that a solution to this
problem is unique only to an arbitrary constant and it is
subject to an integral constraint of the form

J"[ch=J%‘Ed1,

where the right-hand side involves the normal derivative of
p along the boundary.

To put Eq. (1) into a proper form when using a non-
uniform grid we first transform this grid in the physical
domain into a uniform grid in a computational domain
using one-dimensional transformations of the form & = £(x)
and p=n(y). The transformations &(x) and s{y) have
been chosen to have odd symmetry about the vertical

(2)
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and horizontal centerlines, respectively. The transformed
equation (1) is then

(3)

(56)2521? &% dp (ﬁn)zﬁzp Fnip_
0x
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and the boundary conditions are transformed simiiariy.
Alternatively, one could discretize Eq. (1) in the physical
domain itself and solve the resulting finite-difference equa-
tions using matrix decomposition methods {Farnell [3]).

2. MATRIX DECOMPOSITION ON
NON-UNIFORM GRIDS

The derivatives of p appearing in Eq. (3) are discretized
using second-order accurate central differences at all interior
grid points and the transformation derivatives are evaluated
gither analytically or to second-order accuracy using finite
differences. Thus, Eq. (3) can be written in a finite difference

form as
CHET )
Aé?_ ax 2[15 xz jpi-fl;
L% tL(ﬁ )
42\ ox 24\ ox? ipifl‘j
1 /on\? 1 [
+(An2 (6y) +2-4'1( yz))jpi.j+]
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An* \ 3y 240 \ dy jpi:j—l
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B (déz (ax), Anz (ay)j)Px_, Ci g (4)

As usual Eq. (4) can also be applied at the boundaries by
intreducing a row of fictitious grid points outside the
domain. These fictitious grid points can then be eliminated
from the finite difference equations by using central differen-
ces for discretizing the boundary conditions. Alternatively,
one can apply Eq.(4) at the interior points alone. The
boundary points that occur in these finite difference equa-
tions can be eliminated by using second-order accurate one-
sided differences for discretizing the boundary conditions.
We follow the latter approach and discretize the boundary
condition, for example, at i =0, as

(a_ﬁ) *P2,1+4P1‘_f—3P0.j= (3_p
ax i=0 2A€ ax i=0.

In either case, the solution methodology that we present
can be applied for solving the resulting system of linear

algebraic equations. This system can be written in a block
tridiagonal form as

H A4 0
G d,
B, H, A, 0
d2 | _ d, (5)
0 By_, Hy_, An_ ;
N—1 N—-1 N—1 q,N dN
0 B, H,
where
P €Ly
4= P?.j ’ = Cz;,j ,
Pasy Car, f
and
hl.j S 0
fl,j hz; 82,5 0
H,= . \
O Sfu_; Pa—iy Ba-1;
by; O
0 b, 0O
B,= . ,
0 by_,,;, O
0 bar
a,; 0
0 a, 0
A=
0 ay 4, 0
0 Qs

We take M and N to be odd and note in passing that, as
usual, those elements ¢, ; on the grid lines next to the
boundaries, namely, i=1 and M, j=1 and N, now include
terms from the boundary conditions also.

To solve the matrix Eq. (5) we first put the matrix §, given

by
H A, 0
B, H, A4, 0
S= )
0 BN—] HN—I ANfl
0 By  Hy

in a symmetric form, for the reason that we prefer to remain
in the terra firma of the symmetric eigenvalue problem that
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it leads to, rather than trek into the rerra incognita of the
unsymmetrical case. In fact, the potential instability of the
methoed is only linked to the stability of the calculation of
the eigenvalues, for the rest of the algorithm requires only
matrix multiplications.

The process of bringing § into a symmetric form is best
carried out by first examining the center row corresponding
to j= N/2+ . Since the transformation # =#(y) is an odd
function about the horizontal centerline, the second
derivative of # with respect to y is zero at all points in this
row and Eq. (4) shows that By, ,,=4,,, . By similar
arguments for {(x} it can be seen that /oy 1 ;= 82 s s s
for 1<j<N. The matrix Hyn,, can now be made
symmetric by starting with the middle row and working
outwards while multiplying each row by the appropriate
factors. We denote these multiplicative factors as ¢, vy, 1.
As a result of making the matrix H,,, symmetric, the
elements of the off-diagonal matrices By, ., and Ay,
and the right-hand side vector d,, , | will also be altered.
Proceeding away from the central block to bring the matrix
S into a symmetric form, those operations that make the off-
diagonal blocks symmetric also make the diagonal matrices,
the Hs, symmetric. In addition, the matrices are such that
after the symmetry operations are completed, the relations

Hj=ajHN,"2+l+BjAN,'2+l’ 1< j<N,

(6)
and

Aj=B, 1 =viAxpir 1€jEN-1, (7}
hold. The coefficients a;, §,, and y; can easily be determined
and accumulated into vectors. Indeed, since the matrix
H ., is tridiagonal and the matrix 4, , , is diagonal, the
factors a; can be determined by comparing the off-diagonal
terms on either side of the equation. After this the factor §;
is adjusted so that the diagonal terms are equal (see Eq. (11)
below what these relations reduce to when the grids are
uniform). Also, there is no loss of generality involved in
assuming M and N to be odd since the cases where M and
N are not odd can be handled similarly. For example, when
L is even and M is odd, we have B, ,=A4,,,., and
gip=frn+r for 1< j< N, In this case, one can leave
the middle two rows of Gy, and work outwards as
before.

As a result of the Neumann boundary conditions the
matrix S is singular. This causes some small difficulties. As
discussed in Mitchell [6], if now all the rows of § were
added together the resulting row would consist entirely of
zeroes. Thus for this system to be consistent, the sum of all
the ¢, s should be equal to zero as well. This procedure can
be identified as the application of the integral constraint in
a discretized form. As a result of discretization errors, the
above sum usuaily differs from zero. To assure that it will be
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zero, we follow Briley [7] and distribute this difference
equally amongst the ¢, ;s so that now their sum is equal to
zero to machine accuracy. This procedure is particularly
important when working with transformed equations, since
the truncation errors introduced as a result of transforming
to the computational domain tend to be quite large if the
stretching of the grids in the physical domain is severe [&].
After the ¢, /s have been corrected the system of equations
given by (3) is linearly dependent to machine accuracy.

To apply the method of matrix decomposition to solve
this system of equations the matrices H ;1. Ayp, ale
diagonalized simultaneously so that

ETHN/2+1E=A9 ETAN/zHE?-L (8)
where I'is the identity matrix. The matrix E is the matrix of
eigenvectors and A is the diagonal matrix of eigenvalues of
the generalized eigenvalue problem Hp,  e,=AAy; 4 €,
Since the matrices H;, A, and B, involve a linear combina-
tion of matrices Hy,y,, and A,y ., ;, the same eigenbasis
can be used for diagonalizing all the other blocks of S. This
diagonalization results in the separation of the i index and
yields a scalar tridiagonal system on each j = constant line.
As a result the system of equations given by Eq. (5) can be
written for 1 </ M as

(o A+ B Py + 91 Pi2=Cins
o1 Pt A v BB ¥ Py

_ (9)

=Ei.j’

Yv—1Pin—1HlanAd+Ba)Pin="Cin,

where (7, ;. Pa s Par ) =E"P1 s Pa s v Pary)' and
(1o Cagromr Caa ) = EM(€y s Cpjy s €ar )T These tri-
diagonal systems can be easily solved. However, the tri-
diagonal matrix corresponding to { =M, /=N is singular
owing to the system of equations being overdetermined, as
already mentioned. The procedure, then, is to set gy .
arbitrarily to zero and solve for the remaining p,, /s [97.
This is allowed since the solution to Eq. (4) can be deter-
mined only up to an arbitrary constant. Once all the 7, /s
have been obtained, we can obtain p from

P, P
Prdop P2 ), 1gjsN (10)
Pt Pum.j

In summary, for a given right-hand side ¢ the algorithm
consists of the following steps:

(i) Form the matrix S and put it in a symmetric
form. This is accomplished by starting with the center block
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and working outwards with each row multiplied by the
appropriate factor (g, ;). Determine the coeflicients «;, §;,
andy,.

(ii) Compute the matrix of eigenvalues and eigen-
vectors by solving the generalized eigenvalue problem
Hypoe;=2Anpn 05

(iii) Modify the right-hand side by multiplying the ¢; /s
{which now include the boundary conditions also) by the
corresponding &, 's. If, the sum of the ¢, ’s deviates from
zero, then distribute the deviation uniformly among these
elements, so that their sum is zero to machine accuracy.

(iv) Obtain ¢ by performing the matrix—vector mulii-
plication (€, ;, €3 ;s vy Car ;) = ET(€1, 12 Co 4y v Cag. ;)7 Tor
l<j<N

(v) Solve the tridiagonal systems for p.

(vi) Obtain p from g by performing the matrix—vector
multiplication in Eq. (10).

3. MATRIX DECOMPOSITION ON
UNIFORM GRIDS

The algorithm that we have outlined above solves the
discretized Poisson’s equation on a non-uniform grid to
machine accuracy and the code that we have written is
completely vectorizable. It i1s well known that the method
of matrix decomposition is related to Fourier transform
methods for solving partial differential equations [9, 10].
This relationship can be easily seen for uniform grids, since
setting ¢ = x and y = y in Eq.(4) yields, after the symmetry
operations have been carried out, the equations

[3H/2+24 A 0

A H 4 0 a\ [
q2 _ d,
0 4 H 4 . d:
0 A 3H?2+24 N i
{11}
where
—4 1 0
1 —4 1 0
H= ,
0 1 —4 1
0 1 4
32 0
0 1 0
A=
0 L 0
0 32

Here we have used the same second-order accurate one-
sided differences as above for discretizing the boundary
conditions. The generalized eigenvalue problem that needs
to be solved is given by He,=ide, This can be solved
analytically and the eigenvectors can be expressed in terms
of linear combinations of sines as shown in the Appendix. If
central differences are used for discretizing the boundary
conditions, the eigenvectors would be cosines as shown, for
example, in Pickering [9], making the correspondence to
Fourier transforms transparent.

4. PERFORMANCE ANALYSIS

An examination of the sequence of operations given in
Section 2 shows that steps (i) and (ii) need to be performed
only once and the results can be stored and used for any
given right-hand side vector. Thus, these two steps need not
be included in the estimate of the operation count for the
algorithm. Step (i) of the algorithm requires at most MN
multiplications and 2M N additions/subtractions. The solu-
tion of the tridiagonal systems in step (v) requires only
3MN multiplications/divisions and 2M N additions/subtrac-
tions, after one recognizes that the forward elimination of
the tridiagonal systems need be done only once and the mul-
tipliers can be stored and used for any right-hand side. The
matrix multiplications in steps {iv) and (vi) require 2N M2
multiplications and 2N M * additions. Hence, the algorithm
requires 2N M2+ 4MN additions/subtractions and an
equal number of multiplications/divisions. For large values
of M and N, the matrix multiplications can be expected to
dominate the operation count, Numerical experiments do in
fact show that the actual operation count asymptotes to
2N M? for large values of M and N (Table I).

In order .to evaluate both the performance and the
accuracy of the algorithm, we solved the model Neumann—
Poisson problem (with the exact solution p = x? + »?),

a’p &
satz5=4%
ax* gy
TABLE 1
Actual operations
Grid CPU time  Average
(M x N} Multiptications Additions  (seconds) error
63 x 63 2.153M° 2.18M3 0019  58x10-°
127 x 127 207M3 2.08M3 0049 13x10°°
255x 255 2.03M3 2,033 0.234  30x10°%
511 x 511 2.01M3 201M° 1802 7.4x1077
1023 x 1023 20003 20003 13.925 18x1077
63 x 637 2.13M° 223M° 0013 32x10-12

¢ Uniform grid.
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in the unit square — 1< x, y < 3, subject to

op
— =41, =+1
ax Y= E2
op
—=41, =41
ay —_ y _ 2

Solutions to this problem were carried out on several
grids ranging from (0:64 x 0:64) to (0:1024 x 0:1024) and
the results were compared to the exact solution. The
non-uniform grids were generated by using the Roberts
transformation [117] which was written as

x=f tanh [% log (%t—ll) é‘:I,

for the x-coordinate and similarly for the y-coordinate. This
allowed us to evaluate the transformation derivatives
analytically. The parameter § was set equal to 1.5 for
generating all the non-uniform grids. The equation and
boundary conditions were then transformed to the com-
putational domain and discretized as discussed in Section 2.
The discretized ecquations were soived on the Cray
Y-MP8/864 at the Ohio Supercomputer Center in uni-
processor mode. There is an added benefit to solving these
equations on the Cray, for the matrix multiplications in
steps (iv) and (vi} can be performed efficiently using Cray
Assembly Language routines.

The average error on each grid is shown in Table I. By
using the performance tools available on the Cray, the
actual operations performed during execution of the code
were obtdined and are also shown in Table I. As mentioned
before, the extension of the above algorithm to three dimen-
sions is straightforward and the details are discussed in
[12]. We solved a three-dimensional Neumann-Poisson
problem that is similar to the two-dimensional problem
above, except that the exact solution has a z* term now
added to it It is easy to show that the operation count for
the three-dimensional case on a M x N x K gnid should tend
to 20K N M2+ KM N?), for large values of M, N, and K.
Numerical solutions to this problem were obtained on three
grids and the results of these calculations are shown in
Table I1. The actual operation count is seen to asymptote to
the theoretical value given above.

TABLE II

Actual operations

Grid CPU time Average
{(MxNxK} Multiplications Additions (seconds} error
I1x31 =31 44M* 4.5M* 0076 34x107*
63 x 63 x63 42M4 420 * 0625 64x107°

127 x 127 x 127 41M1 41Mm* 7259 13x10°*

5. CONCLUSION

We have given above an extension of the matrix decom-
position method to solve the two-dimensional Poisson
equation subject to Neumann boundary conditions on a
non-uniform grid. The three-dimensional version follows
directly from this. We would like to stress how the sym-
metrization procedure above brings out clearly the integral
constraint on the Neumann problem as a consistency condi-
tion on the finite difference equations for both uniform and
non-uniform grids. Thus it illustrates how the system of
equations can be forced to satisfy the consistency condition.
This is of importance in cases where the equations and
boundary conditions are differenced in such a way that they
do not satisfy such a condition, as is often true in the case
of the Poisson equation for pressure that arises during
the solution of the Navier-Stokes equation in primitive
variables. The other point that we would like to stress is that
finding the eigenvectors of the Laplacian operator at the
preprocessing stage leads to an increase in the computa-
tional speed in this part of the solution of the Navier—Stokes
equations, for the pressure can now be efficiently deter-
mined by muitiplying the vector representing the right-hand
side by a previously stored matrix.

APPENDIX

The generalized eigenvalue problem He,= ide, can be
written as

-4 1 0
1 —4 1 O
€
6 1 -4 1
0 1 —4
32 0
o 1t 0
=21 - - - . e, (Al)
c 1 0
0 32

where, ¢,= (¢, ;, $2.1, - @ ar,)"- By multiplying both sides of
Eq. (A1) by A~', we obtain

—8/32/3 0
I —4 1 0
e,=Ae,. (A2)
0 1 -4 1

0 2/3 —8/3
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The system (A2} can also be written as

G 1i— (B +A) P+ b,

=0, I<isM, (A3}

subject to the boundary conditions
3po,—4¢y +92,=0, (A4)
3ara 1= 4t P 1a=0. (A5)

The solution to the above system is, after substituting

Ay=—4+2cos b,
¢5;.1 =a Cos 1'9,4- b sin f@p (A6)

where a and b are arbitrary constants. Elimination of b by
using Eq. (A4) leads to the equation for the eigenvectors,

$oi=c(—3sini6,+4sin(i—1)0,—sin(i—2) 8), (A7)

where the constant ¢ can be fixed by proper normalization
that does not need to concern us here. Substituting the
eigenvectors of Eq. (A7) into Eq. (A5) leads to the equation

9 sin(M + 1) 6, 24 sin MO, + 22 sin(M —1) 6,

—Bsin(M—2}6,+sin{M—3)8,=0, (AB)

for the eigenvalues 4, (or 8,).

ACKNOWLEDGMENTS

We thank the Ohio Supercomputer Center for granting us the computing
tirme necessary to carry out this work. We are also grateflul to Ted Scheick
for the beneficial discussions we had with him during the course of this
work.

REFERENCES

—

. V. Babu and S. A. Korpeia, Comput. Fluids 18 (2}, 229 (1990).

. B. L. Buzbee, G. H. Golub, and C. W. Niclson, STAM J. Numer. Anal.
7 {4), 627 (1970),

. F. Dorr, SIAM Rev. 12, 248 (1970).

. P. Swarzirauber, STAM Rew. 19, 490 (1977).

. L. Farnell, J. Comput. Phys. 35, 408 (1980).

A. R. Mitchell, Computational Methods in Partial Differential
Eguations (Wiley, New York, 1969).

. R. Briley, J. Comput. Phys. 14, 8 {1977).

8. M. Vinokur, J. Comput. Phys, 50, 215 (1983).

9. M. Pickering, An Introduction to Fast Fourfer Transform Methods for
Pardal Differential Equations, with Applications (Research Studies
Press Ltd. Wiley, New York, 1986).

10. R. C. Le Bail, J. Comput. Phys. 9, 44 (1972).

11. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational
Fluid Mechanics and Heat Transfer (Hemisphere, Washington, DC,
1984).

12, V. Babu, Ph.D. thesis, Ohio Staie University, Columbus, OH.

= (]

|



